Phil. Trans. R. Soc. Lond. A 322, 213-241 (1987) [ 213 ]
Printed in Great Britain

STRATIFIED ROTATING FLOW OVER AND AROUND
ISOLATED THREE-DIMENSIONAL TOPOGRAPHY

By D. L. BOYER!, P. A.DAVIES?, W.R.HOLLAND?, F. BIOLLEY!
ANDp H. HONJI*

1 Department of Mechanical Engineering, University of Wyoming, Laramie, Wyoming 82071, U.S.A.
2 Department of Civil Engineering, The University of Dundee, Dundee DD1 4HN, U.K.
3 National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, U.S.A.
% Research Institute for Applied Mechanics, Kyushu University, Fukuoka 812, Japan

(Communicated by P.H. Roberts, F.R.S. — Received 17 January 1986)

[Plates 1-16]

CONTENTS

PAGE
1. INTRODUGTION 214
2. NON-DIMENSIONAL PARAMETERS 215
3. EXPERIMENTAL APPARATUS AND TECHNIQUES 216
3.1. Secondary flows 217
4. LABORATORY EXPERIMENTAL RESULTS 219
4.1. Non-rotating, linearly stratified flows 219
4.2. Rotating, linearly stratified flows ' 223
4.3. Flow-régime diagrams ‘ 228
5. NUMERICAL MODELLING , k 229

5.1. The quasigeostrophic potential-vorticity equation with friction, stratification
and topography 230
5.2. Numerical techniques : o 231
5.3. Numerical experiments 232
6. CONCLUDING REMARKS ' 239
REFERENCES v 241

Laboratory and numerical experiments have been conducted on the flow of a linearly
stratified rotating fluid past isolated obstacles of revolution (conical and cosine-
squared profiles). Laboratory experiments are considered for a range of Rossby,
Ekman and Burger numbers, the pertinent dynamical parameters of the system. In
these experiments, inertial, Coriolis, pressure, viscous and buoyancy forces all play
a significant role. Empbhasis is given to examining the nature of the time development
of the flow fields as well as its long-time behaviour, including eddy shedding. It is
shown, for example, that increased stratification tends to diminish the steering effect
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214 D.L. BOYER AND OTHERS

of the obstacle, other parameters being fixed, at elevation levels above the topography.
At levels below the top of the obstacle, increased stratification tends to force the fluid
around rather than over the body and this, in turn, tends to develop vortex shedding
at smaller Reynolds numbers than would occur in corresponding lower stratification
cases. Data for the cone reveal that the Strouhal number for the eddy-shedding régime
is relatively insensitive to the values of Ro, Ek and § for the range of parameters
investigated.

Stratification tends to induce lee waves in the topography wake, and the nature
of this lee-wave pattern is modified. by the presence of rotation. For example, it is
demonstrated that for vertically upward rotation, the lee waves on the right, facing
‘downstream, have a larger amplitude than their counterparts at the same location
on the left.

The steering effects, as predicted by a three-level quasxgeostrophxc numerical
model, are shown to be in good agreement with the laboratory results for a narrow
range of parameter space. The numerical model is used to examine the effects of
rotation, friction and stratification in modifying the flow. The quasigeostrophic
numerical simulations do not produce eddy shedding, and it is concluded that a full,
primitive equation numerical model would be needed to explore this phenomenon.

1. INTRODUCTION

For many years, there has been a recognition that the large-scale effects of extensive mountain
complexes upon incident wind fields can be simulated in several important respects by
theoretical and physical models in which slow steady uniform flows of stratified and rotating
fluids are deformed by the presence of isolated solid obstacles placed in the flow (see, for
example, Buzzi & Tibaldi 1977; Baines & Davies 1980; Smith 1980; Davies & Boyer 1984).
Particular emphasis in this regard has been placed recently upon: the sub-grid scale fluid
dynamical processes occurring in the neighbourhood of the Alps (GARP 19%8), and the
associated Alpex programme of field observations and theoretical investigations (GARP-Alpex
19824, ) has generated renewed interest in these problems.

In this paper we report some recent laboratory results that are of relevance to the above
processes. Attention has been focused upon flows incident upon relatively smooth-sloped
topographies (conical and cosine-squared obstacles of revolution) for which background
rotation plays a significant but not dominant dynamical role. In terms of the non-dimensional
parameters of the problem, attention has been confined primarily to flows having Burger
numbers, § & 1, and Rossby numbers, Ro & 107, where § and Ro can be regarded as denoting
the relative importance of the buoyancy and inertial forces, respectively, to the Coriolis forces.
No B-effect has been included in the studies, and topographic elements having maximum
heights greater than the Ekman layer thickness have been employed.

Until recently, laboratory studies of topographic effects in rotating stratified fluids have
concentrated upon flows in which rotation has been the dominant constraint (Davies 1972;
Baines & Davies 1980) and for which the steering effect of the obstacle in the direction of the
rotation vector has been of primary interest. In the present studies, and in the recent
investigations by two of us (Boyer & Biolley 1986), density stratification exerts a much stronger
influence than in other related experiments. In addition, attention is not restricted to steady
flows, and both the downstrcam and interior regions of the flow are investigated in some detail.

t The fluid contained within an imaginary upright cylinder circumscribing the obstacle is denoted the ‘interior
region’.
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" The present study can therefore be regarded as being complementary to, and an extension of;
earlier experimental and numerical work on (i) f-plane and B-plane flows over and around solid
cylindrical obstacles in rotating homogeneous fluids (Boyer & Davies 1982; Boyer et al. 1984),
(ii) related studies with stratified, non-rotating (Brighton 1978; Snyder et al. 1979; Hunt &
Snyder 1980; Castro et al. 1983; Snyder ¢t al. 1985) and homogeneous non-rotating (Gaster
1969) flows past isolated topography, and (iii) f-plane, stratified flow over two-dimensional
ridges (Boyer & Biolley 1986).

The plan for the paper is as follows. In §2, the fundamental dimensionless parameters
governing the physical system are defined. In §3, the apparatus and experimental techniques
employed, and the nature of the secondary motions observed in the tow-tank facility, are
discussed. The results of the laboratory experiments are presented in §4. Numerical models,
including comparisons with laboratory expenmcnts are given in’ §5 and some concluding
rcmarks are made in §6.

2. NON-DIMENSIONAL PARAMETERS ‘

The flow conﬁguratlon relatlve to the rlght-handed cartesian coordinate system (x,y,z) is
illustrated schematically in figure 1. A linearly stratified fluid of mean density, p,, and kinematic
viscosity, », and having a normalized vcrtlcal density dlfferencc, Ap/p,, is contained within
a long horlzontal channel of rectangular cross section of width, L, and depth H, that rotates
uniformly about a vertical axis (z) with angular velocnty w(O 0,w). Relative to a rotating
observer, the fluid is in uniform motion, with steady velocity (U, 0, 0) past a body of revolution
symmetric about the z-axis and of maximum hclght b, and base dlameter, D. In the
experiments, as discussed below, the relative flow is generated by towing the topographic feature
through the fluid, which is otherwise at rest relatwc to a rotating observer. Itis a straightforward
matter to show that these systems are dynamlcally equivalent.

F—Ap’ | :,‘ | \Pw S ¢g
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e D

Ficure 1. Physical system. .

- A suitable set of independent, non-dimensional parameters defining the flow is thus:
(i) Ro = U/2wD, the Rossby number;

(ii) Ek = v/2wH?, the Ekman number; - : »

(iii) S = g(Ap) H/4w?p; D = N*H?/4w?D?, the Burger number

(iv) hy/D, hy/H, D/L, the gcometrlcal parameters; and

(v) - the obstacle shape. , V '
Here, N is the Brunt-Viisild frequency dcﬁned by N = (gAp/p0 H)}, and g is the acceleration
due to gravity. Note that other familiar non-dimensional parameters such as the Reynolds

14-2
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number, Re = UD /v = (Ro/E) (D?/ H?), and the Froude number, Fr = U/ Nk, = (Ro/S%) (H/k,),
are not independent of the above. For cases in which the flow is stratified, but not rotating,
the Reynolds and Froude numbers are generally used as the determining parameters
(Brighton 1978; Hunt & Snyder 1980), whereas when the fluid is homogeneous and non-
rotating, the Reynolds number is the sole dynamical parameter (Tritton 1977) determining the
character of the flow.

3. EXPERIMENTAL APPARATUS AND TECHNIQUES

The apparatus used in this study has already been described in detail in previous
communications (Kmetz 1982 ; Boyer & Kmetz 1983 ; Boyer & Biolley 1986). The experimental
facility consists of a Perspex channel-tow tank having dimensions 2.4 mXx 0.4 mx 0.3 m
mounted horizontally on a rotating turntable, the angular velocity of which can be varied
smoothly and continuously. The channel can be filled with a salt-stratified fluid by the familiar
Oster double-reservoir technique (Oster 1965 ; Davies 1972) to produce a stable density profile
within the working section. The depth of fluid within this section of the channel is controlled
by the vertical adjustment of a horizontal Perspex lid, and an isolated three-dimensional solid
obstacle (either a tall cone or a shallow cosine-squared topography), is translated through the
fluid by means of a continuous belt to which the base of the obstacle is mounted. A variable
speed motor controls the speed of (i) the belt and (ii) an overhead platform that is linked
synchronously to the motor drive by a chain and sprocket arrangement. Video and still cameras
can be mounted on the platform to record the flow structure in the tank with respect to a frame
of reference fixed to the moving obstacle. Lighting for flow visualization at different levels and
cross sections is provided from a battery of projectors into which slides with long narrow slits
have been inserted; the lighting system is also affixed to the rotating platform.

In the present study, attention was confined to linear density gradients, this state being
achieved by careful regulation of the flow rates between the brine and fresh-water reservoirs
and the channel. During the filling process, mixing at the inlet was minimized by routing the
fluid directly to the underside of the belt and allowing it to rise slowly through a gap between
the belt and the wall of the channel. In addition, mixing caused by belt-edge effects during
an experimental run was eliminated by constructing false walls to the working section. The
walls were bolted to the underside of the lid and a foam-rubber seal was placed between the
belt and the bottom surfaces of the false walls. This arrangement ensured that there was no
transfer of edge disturbances from the motion of the belt to the working section, and that
continuity in the density field at the base of the tank was retained.

The density gradient was established with the channel at rest. The angular velocity of the
turntable was then increased in small incremental steps until the required rotation rate was
reached. After the fluid had reached solid-body rotation (see, for example, Boyer & Biolley
1986), the stratification was checked by withdrawing small samples in turn from eight reference
levels in the working section and measuring the density of the samples with a refractometer.
The density gradient was monitored frequently throughout the experimental runs.

The electrolytic precipitation method (Honji et al. 1980; Boyer ¢t al. 1984) and the suspended
particle technique (Boyer & Biolley 1986) were used for visualization of both steady and
unsteady flows. Flow streaklines relative to the obstacle were obtained with the former method,
and in the latter case streamlines relative to the object and the tank were obtained by recording
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(2-5 s) time exposures of the moving particles with the camera mounted on the moving platform
and translating with the topography. The exposure time, At, could be adjusted so that for
different belt velocities, U, the dimensionless exposure time, 7, = (At) U/D, could be kept
constant. The small (0.5 mm diameter) polystyrene spheres used as marker particles had a mean
density of 1.0440.01 g cm™3, and the mean density of the stratified fluid was matched to this
value to ensure that small variations in density of the polystyrene could be used to produce
an approximately uniform vertical distribution of tracer particles. The particles were illumi-
nated at different levels in the tank with light beams having a width of approximately 5 mm.

Case-study investigations of the flow over and around the obstacles were conducted by using
stratification levels, Ap/p, ~ 5.0%, and 0.59,, respectively, over a range of Rossby, Ekman
and Burger number combinations. For a particular geometry, the same obstacle and fluid depth
were used throughout, and variations in the above parameters were produced by changing U
and w only (for a given Ap/p,).

3.1. Secondary flows

For cases in which the fluid is unstratified, it is known that secondary flows and instabilities
can develop in rotating channel flows (Hart 1971; Lezius & Johnston 1976; Speziale &
Thangam 1983), and that such flows can modify significantly the longitudinal velocity profile,
particularly when the basic flow is turbulent. However, when the fluid is stably stratified and
rotating, and the flow is laminar and forced by the motion of the bottom boundary (as in the
present study), secondary flows of a different type are established because the bottom boundary
layer transports ‘heavy’ fluid in both the downstream and rightward directions. By continuity,
secondary return flows must develop in the interior region to replace the heavy-fluid deficit
and thereby balance the primary mass flux ferced by the motion of the bottom boundary. For
rotating homogeneous flow, the return flow due to the streamwise Ekman-layer transport is
rather uniformly distributed over the entire cross section and thus is relatively weak compared
with the belt speed (i.e. O(E})); see, for example, Boyer & Kmetz (1983).

To study the nature of this secondary return flow (i.e. its magnitude and spatial structure),
a series of exploratory experiments was conducted without an obstacle in the flow. Axial
velocities were measured for a cross section in the vicinity of the streamwise channel centre by
taking time exposures of the motion of tracer particles with a camera fixed with respect to the
moving belt. From these photographs the velocity, U, of the belt was subtracted to obtain «/,
the velocity with respect to the tank.

Figure 2 depicts the spatial distribution of #’/U for both a non-rotating (2) and a rotating
(b) experiment. It is noted that for the stratified, non-rotating case, there is a return flow present
over the entire cross section but this flow is stronger in the lower levels. Note also that the
secondary return flow without rotation is quite uniform across the channel. Figure 25 depicts
the return flow for a typical stratified, rotating case. One notes that again the stronger return
flows are in the lower portions of the channel, but, under the influence of rotation, there is
now a significant cross-channel variation in flow velocity. In particular, the rotating experi-
ments are characterized by sidewall jets, the strength of which (i) decrease with increased
Ro;, = U/20L, (ii) increase with increased §;, = g(Ap) H/4w?p, L% and (iii) increase with
increased Ef if, in each case, the other parameters remain fixed. Here, Ro;, and S, are the
channel Rossby and Burger numbers, respectively, each being defined by using the channel
width as the characteristic horizontal dimension. In the interior of the channel and in the
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FiGURE 2." Streamwise secondary motions, «'/U, for H/L = 0.26 and parameter values shown (see text for
definitions) (a) stratified, non-rotating, Ap/p, = 7.9 x 1073, Re; = 760, Ro;, = Ek = c0; (b) stratified, rotating,
Ap/p, =7.5x1073, Re; = 720, Ro;, = 0.06, Ek = 3.0 x 1074,

side-wall jets, the secondary flow decreases with vertical distance from the belt; in the lower
levels, the flow is in the same direction as that of the belt, but above z/H & 0.25, the flow
reverses. In all cases, the smallest secondary flows occur near the centre of the channel.

Measurements of the velocities and lateral-length scales of the side-wall jets, as exemplified
by that in figure 25, indicate that these motions are in quasigeostrophic balance (i.e. typical
Rossby numbers of order 1071). This being the case, the isobars in the vicinity of the jets must
be tilted in such a way as to have high pressure on the right facing in the direction of the jet
motion; see the schematic diagram in figure 3. One possibility for tilting the isobars in such
a way as to support the observed secondary motion might be the transport of relatively heavy
fluid by the Ekman boundary layers on the belt into the corner region in the vicinity of y = 0.5,
z = 0.0 and away from the corner region near y = —0.5, z = 0.0 (see figure 3) where y, z have
been made dimensionless with L, H, respectively. In the corner along y = 0.5, z = 0.0, the fluid
is forced to rise vertically along the solid vertical boundary, but the vertical excursion is limited
by the fluid’s excess negative buoyancy. A local circulation is thereby established as shown.
Along the corner region y = —0.5, z = 0.0, a circulation of the same sense is induced because
of the excess positive buoyancy of the fluid particles that are forced to descend to maintain
the Ekman transport out of this corner. As one notes, however, these corner circulations would
tend to drive the isopycnals (hence isobars) in the opposnte direction to those that must occur
to drive the jets in the directions indicated. '

It is thus concluded that the principal mechanism at work in dr1vmg the jets is the complex
response to the streamwise transport of heavy fluid by the belt. This transport sets up a pressure
gradient in the +x direction, resulting in a weak cross-channel transport of fluid as indicated
in figure 3. In addition, the return flow balancing this transport occurs near the channel walls
and forces the isobaric surfaces to have the general shape indicated.
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Jl/ .

Ficure 3. Schematic representation of isobars and secondary flows in the channel cross-section for rotating and
stratified flow compatible with the observed streamwise motions.

4. LABORATORY EXPERIMENTAL RESULTS

In this section, the principal qualitative features of the various flow configurations are
delineated. These are then placed in the context of flow-régime diagrams of inverse Froude
number against Reynolds number (for various Ekman numbers), to allow an understanding
of where the various flow characteristics can be found in parameter space. Photographs from
particular experiments are presented to clarify the discussion and to allow future investigators
the opportunity of comparing potential analytical and numerical models with the experimental
observations.

4.1. Non-iotatz'ng, linearly stratified flows

The initial experiments are concerned with non-rotating flows. This allows comparison
with their rotating counterparts discussed below. By varying the vertical proportional
density difference, Ap/p,, from 0 to ca. 5% and the speed of the obstacle in the range
0.5 < U< 1.5cms™}, the Froude and Reynolds number ranges investigated were: cone
(0.03 < Fr < 0.82 and Fr = 00, 370 < Re < 1130) and cosine-squared (0.10 < Fr < 1.20 and
Fr = o0, 500 < Re < 1520), respectively. For all experiments the obstacles were placed in the
centre of the channel to minimize the effects of secondary flows.

4.1.1. Conical qbstacle

The conical obstacle had a base diameter, D = 7.6 cm, and a height, £, = 6.6 cm, with
the fluid depth, H = 8.1 cm; the cone was thus relatively tall (h/H = 0.81) and steep
(ho/D = 0.87), and in these respects it differed somewhat from the obstacles of similar geometry
used in earlier studies by other investigators. For example, Gaster (1969) investigated
homogeneous flows past slender cones having maximum values of 4,/ H = 0.7 and /D = 36.0,
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and Brighton (1978) employed cones with 4,/H = 0.4 and 4,/D = 0.7. The range of Reynolds
numbers investigated in the present set of experiments (i.e. 370 < Re < 1130) was approxi-
mately the same as those studies cited above. For the stratified flow case, the range of Froude
numbers considered was within that explored by Brighton (1978).

As in the Brighton (1978) studies, the present non-rotating experiments are characterized
by the presence of a bottom boundary layer, the thickness of which is not negligible compared
with the height of the obstacle. Considering the belt to be an infinite plane surface, the boundary
layer grows as 8 & (vt)i, where we assume similar growth rates for the stratified and unstratified
cases. The thickest layers thus occur for the lowest speeds (i.€. 0.5 cm s71). With the maximum
belt traverse being approximately 120 cm, and with v & 0.01 cm? s, the maximum boundary-
layer thickness in the experiments is 8, & 1.5 cm. Some of the observations to be discussed
were made below this level and will be so indicated.

It is useful to first discuss the qualitative nature of the observed flow for cases in which the
free-stream speed is fixed and the background stratification is varied. Figure 44—, plate 1,
depicts experiments for which U = 1.0 cm s™ and for which Ap/p, = (0.00, 0.007, 0.064),
respectively. The normalized tracer injection level is z*/k, = 0.76 (in this and subsequent
figures, z* will represent the tracer injection level). Because 8,,,./%, & 0.17, the observation
level is well above the boundary layers.

The Reynolds number is thus approximately fixed at Re = 720, while the Froude numbers,
are (00, 0.17, 0.05) respectively. The series of photographs under figure 4i show some of the
detailed structure of the wake in the vicinity of the cone; we term these ‘ near-field observations’.
The photographs under figure 4ii depict the flow field at large distances from the obstacle;
we term these ‘far-field observations’.

For an upright obstacle having non-vertical sides, it is to be expected that the downstream
flow is three-dimensional, at least in the immediate vicinity of the obstacle and especially for
cases in which the fluid is homogeneous or weakly stratified. This is confirmed by the relatively
indistinct and confused dye traces in figure 44, b; i.e. vertical motions in the wake cause dye
to be elevated and depressed with respect to the illumination level. The relatively clear dye
traces in figure 4 ¢ are indicative of weak vertical motions; i.e. the flow occurs in approximately
horizontal planes.

In addition to the suppression of vertical motion by a decrease in Fr, the most evident
manifestation of smaller Froude numbers is the modification to the far wake form. For the
homogeneous case (figure 4aii), the wake develops from eddy pairs that are formed and shed
approximately symmetrically from the rear of the obstacle; see also figure 5, plate 2. The far-field
wake for this case is not characterized by a vortex street (which is typical for flow past an upright
cylinder of uniform cross section in this Reynolds number range) but rather by an array of
symmetrical eddy pairs confined within a rather narrow envelope, the form of which we denote *
as ‘varicose’; see figures 4ai, aii. The differences between the wake forms of the cone and
cylinder in the homogeneous case are ascribed to the large vertical motions induced by the
sloping walls of the conical topography. This, in turn, results in coherent slanted vortices being
generated at the wall and advected downstream. As will be seen below, both stratification and
rotation inhibit this vertical motion and promote motion in approximately horizontal planes.
In such cases, the wake produced has the structure of a classical vortex street. This is seen in
the comparisons between the homogeneous case (figure 4a) and the stratified cases (figure
4b,¢), the latter exhibiting sinuous wakes near the obstacle and alternating eddy patterns
characteristic of vortex streets far downstream.
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Ficure 8. Streakline photograph depicting the existence of lee waves for non-rotating flow past a cosine-squared
obstacle for Re = 1500, Fr = 0.69, hy/H = 0.25, hy/D = 0.20, D/L = 0.32 and z*/h, = 1.46. Note that the
white lines painted on the upstream portion of the obstacle are not streaklines.
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Ficure 11. Some comparisons between streakline and particle streak photographs of non-rotating flow past
cosine-squared obstacle for Re, Fr values of (a) 520, 0.25, (b) 490, 0.31, (¢) 1030, 0.51 and (d) 1000, 0.59 and
for z* /hy = 1.46. Geometrical parameters as in the legend of figure 8.

Ficure 12. (a) Near-field and (b) far-field streakline patterns for rotating homogeneous flow past conical obstacle;
Ro =0.20, Ek = 1.6 x 1074, Re = 1100, S = 0.0, Fr = o0 and z* /k; = 0.46. Geometrical parameters as in the
legend of figure 4.
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Figure 13. Streakline photographs for rotating, stratified flow past conical obstacle with Ro = 0.13, Ek = 3.1 x 1074,
Re = 370, § = 3.1 and Fr = 0.09. Geometrical parameters as in the legend of figure 4. Arrows on (4) and ()
indicate initial cyclonic disturbance.
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026 3.1x10™* 3.0

013 15x107* 11

Ficure 14. Streakliné photographs showing effects of increasing @ upon rotating, stratified flow past conical obstacles
for Re = 740, Fr = 0.17 and z*/k, = 0.76. Geometrical parameters as in the legend of figure 4.

0.13 31x10™* 312

0.06 1.5%x10™* 085

FicurE 15. Streakline photographs showing effects of increasing w upon rotating stratified flow past conical obstacles
for Re = 360, Fr = 0.09 and z* /h, = 0.46. Geometrical parameters as in the legend of figure 4.
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0.49

Ficure 19. Streakline photographs for rotating stratified flow past cosine-squared topography with Ro = 0.10,
Ek=1.6x107%, Re = 950, § = 0.47 and Fr = 0.57. Geometrical parameters as in the legend for figure 8.
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Ficurk 20. Streakline photographs showing effects of increasing U upon rotating stratified flow past cosine-squared
topography for Ek = 1.7x 1074, § = 0.24 and z*/h, = 1.46. Geometrical parameters as in the legend for
figure 8. :
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Ficure 21. Streakline photographs showing effects of increasing Ap/p, upon rotating stratified How past
cosine-squared topography for Ro = 0.10, Ek = 1.6 x 1074, Re = 950 and z* /k, = 0.49. Geometrical parameters
as in the legend for figure 8.
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Ficure 22. Streakline photographs showing effects of increasing w upon rotating stratified flow past cosine-squared
topography for Re = 980, Fr = 0.20 and z*/k, = 0.49. Geometrical parameters as in the legend for figure 8.
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Ficure 23. Side elevation photographs of lee waves generated by cosine-squared topography for Ro = 0.30,
Ek =3.0x107%, Re = 1510, 8 = 1.7, Fr = 0.92, z* /h, = 1.46, 2.43, 3.40 and for y/(3D) of (a) —0.8, (b) —0.4,
(c) 0.0, (d) 0.4 and (¢) 0.8. Geometrical parameters as in the legend for figure 8.
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Ficure 30. A comparison of (a) laboratory and (b) numerical model streamlines at a height of 3 cm above the
bottom, for numerical experiment 1 parameters (see table 1).
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With a view to examining the variation of horizontal flow patterns with elevation, a series
of experiments with neutrally buoyant tracer particles was conducted. Figure 6, plate 3, depicts
such experiments for a fixed speed (U = 0.5 cm s™!) and stratification (Ap/p, = 0.7%,), at
various observation levels, z*/A,, of 64, 0.88; 65, 0.46; and 6¢, 0.15. The photographs are
obtained by taking short time exposures of the moving tracer particles with a camera that is
at rest with respect to the channel; i.e. the cone is moving with respect to the camera and is
indicated by the broad, blurred, white horizontal streaks in the central section of each of the
photographs. The elapsed dimensionless time 7 = tU/D is given in the lower portion of the
figure. The dimensionless boundary layer thicknesses at 7 = 12.3, 16.3 are approximately
0/hy = 0.17, 0.24, respectively, so that the flow patterns of the last two photographs of figure
6¢ are embedded in the upper portions of the boundary layer.

Some deformation of the flow field is in evidence at all observation levels, but is quite weak
at the upper level (see figure 6a). We note that the flow in the early stages of development
at the lowest two levels (figures 65,¢) is characterized by symmetrical starting eddies that
remain attached to the moving obstacle and elongate progressively with time. This elongated
pair subsequently separates asymmetrically and a sinuous wake with alternating eddies is
formed. Measurements of the characteristic retention times (i.e. the time taken for the first
separation to occur), 7, for this and other similar experiments at different free stream speeds,
U, suggest that 7, & D/U with a constant of proportionality of ca. 10. Note that at the upper
level (figure 6a) the principal motion is a streamwise current caused by the drag of the cone
and that this wake develops a small horizontal oscillatory motion at large times.

A comparison between the flow at the two lowest observation levels in this and other similar
experiments reveals a strong coherence in the vertical structure of the wake both with regard
to the eddy formation — elongation phase and to the eddy-shedding process. The latter property
of the flow is in consonance with the results of Brighton (1978), who found that for weakly
stratified flow the shedding frequency of the eddies behind a cone was independent of height.
This finding contrasts with the results of Gaster (1969) for homogeneous flows that indicated
that the shedding frequency for slender cones was determined by the local cone diameter at
each level. Observations from the experiments depicted in figure 6 and others reveal that the
axes of the shed vortices are curved downstream and towards the plane y = 0, a finding also
reported by Brighton (1978); see the schematic representation in figure 7.

/’Q @/Q (//ﬂ/ -
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Ficure 7. Schematic diagram indicating tilting of vortex cores downstream of cone.

4.1.2. Cosine-squared topography

The programme of experiments with the smooth, shallow cosine-squared topography
followed essentially the same course as the cone studies, but had as an additional objective the
investigation of the flow structure at levels in the fluid well above the top of the obstacle. The
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principal reason for including these non-rotating studies was to compare the resulting flow
structures with those obtained in rotating cases where topographic steering was anticipated.
The obstacle took the form (z/h,) = cos? (rr/D), with &, and D having values of 2.00 cm and
10.08 cm, respectively.

The flow at five reference levels (two below the top of the obstacle and three above it) were
recorded. In the upper layers of the fluid, particularly for the small Froude-number cases, the
presence of the obstacle produced no noticeable effects upon the horizontal streakline patterns;
i.e. the streaklines passed over the region above the obstacle without noticeable deflection.
However, for flows at relatively larger Froude numbers, three-dimensional lee waves generated
by low-level interactions of the flow with the solid obstacle could be detected in the upper levels.
Figure 8, plate 4, is an example of a lee-wave case where the observation level is well above
the top of the obstacle (i.e. z* /h, = 1.46). The wave is made visible by the vertical excursions
of the horizontally injected streaklines above and below the horizontal light beam illuminating
the flow. The values of the Froude numbers for which lee waves were generated were compatible
with the results of Hunt & Snyder (1980) and others who found that for smooth topographies
a critical value of Fr ~ 0.4 delineated the approximate boundary between flow régimes in
which flow passed predominantly over the obstacle (Fr > 0.4) and around it (Fr < 0.4)
respectively, with lee-wave generation being favoured by the former circumstance.

The horizontal flow patterns at levels below the mountain top for cases in which the flow
is predominantly around and over, respectively, are now investigated. Figure 9, plate 5, depicts
the (i) near and (ii) far fields of a series of experiments at two different speeds (U = 1.0,
1.5 cm s71), with stratification, Ap/p, & 5.79, and at observation levels below the crest of the
topography; Fr < 0.4 for all cases (see legend). We note that the near fields exhibit a sinuous
nature whereas the far fields develop into a vortex street. These observations are qualitatively
similar to the wake characteristics for the stratified cases of flow past a cone as shown in figure
4b,c.

Figure 10, plate 6, also depicts a series of experiments for U = 1.0, 1.5 cm s™%, but now with
a smaller stratification, Ap/p, &~ 0.7%,, than that in figure 9. The observation levels are the
same, but the Froude numbers are now much larger (i.e. Fr > 0.4). For these large Fr cases
the flow in the lowest level forms a separated region in the lee of the obstacle for both Reynolds
numbers. The flow then reverts rapidly to a relatively undisturbed state of smooth streamwise
streaklines. The downstream extent of the separation bubble for such a flow increases with
increasing Reynolds number in much the same manner as for homogeneous flow past circular
cylinders in rotating and non-rotating fluids (Boyer & Davies 1982). Near the level of the top
of the topography (figure 104, b) the incident streaklines are deflected only slightly by the solid
boundary; note that for the lowest Reynolds-number case this deflection is almost impercep-
tible. The local deformation produced by the interaction produces little downstream effect, and
for both cases the laminar wake consists of a series of parallel streaklines.

Whereas streakline photographs for both weakly and strongly stratified flows showed little
horizontal deflections for the cosine-squared topography when the observation levels were
above the feature, a series of experiments were conducted with neutrally buoyant tracer
particles to further investigate this region. Figure 11, plate 7, depicts comparisons between the
streakline and particle methods of flow visualization for an observation level of z* /A, = 1.46
and for two sets of Re, Fr combinations; i.e. Re & 500, Fr &~ 3.0 (figure 11a,5) and Re &~ 1000,
Fr ~ 0.55 (figure 11¢, d). One notes from these experiments that the particle streaks give more
detail than the streakline patterns. For example, when the Reynolds number is sufficiently low,
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a definite streamwise current caused by the drag of the obstacle is in evidence in the particle
photograph (figure 114) but not in the corresponding streakline photograph (figure 115).

As the Reynolds and Froude numbers are increased, more flow is forced over the topography
for otherwise identical conditions, and the thin streamwise current formed by the drag of the
topographic feature disappears (see the particle photograph, figure 11¢). At these larger Re,
Fr combinations, however, three-dimensional lee-wave patterns begin to appear as evidenced
by the streakline photograph of figure 114. Note that with the particles being distributed quite
uniformly throughout the fluid, the horizontal particle photographs show no evidence of the
lee wave pattern; such effects can be demonstrated with tracer particles by using a vertically
oriented streamwise sheet of light, and photographing this vertical section (see figure 23, plate
15, below).

Hunt & Snyder (1980) have shown that for non-rotating stratlﬁed flow over a bell-shaped
hill and for Fr > 0.4, there is a region above the obstacle of thickness O(#%,/Fr) within which
the initially horizontal incident streaklines are affected by the presence of the obstacle. By using
this relation, figure 11¢, d should not be affected at the z* /A, = 1.46 level, and the experiments
so indicate. '

4.2. Rotating, linearly stratified flows

The effects of rotation were studied by choosing reference rotation rates, w, of 0.25 and
0.5 571, varying the normalized vertical-density difference, Ap/p,, from 0.3 to 5.09, (as well
as investigating homogeneous flows), and considering free stream speeds, U, of 0.5, 1.0 and
1.5 cm s, The ranges of the Rossby, Ekman and Burger numbers investigated were thus: cone
(0.07<R0<0.40, 1.5x107* < Ek <3.0x10™* and 0.9 <§ < 36.0) and cosine-squared
(0.05 < R0 < 0.30, 1.5x 107 < Ek < 3.0x 107* and 0.39 < § < 17.5).

The range of U was limited by practical considerations; namely, requirements that the belt
motion be steady (U = 0.5 cms™1) but sufficiently slow for dye tracer streaks to be clearly
visible (U < 1.5 cm s7!). The upper limit on the rotation rate of @ < 0.5 s™ was established
to ensure that centrifugal effects would be negligible (see, for example, Boyer & Biolley 1986).

Studies with stratified non-rotating fluids, as exemplified by those discussed above, have
demonstrated that the nature of the starting flow and of the character of the downstream wake
are sensitive to the degree of stratification in the fluid. This is principally due to the tendency
of stratification to suppress vertical motion. If the fluid is also rapidly rotating (Re < 1,
Ek < 1), the constraints of geostrophy further inhibit vertical motions. Boyer & Biolley (1986),
for example, have shown that for other parameters fixed, the waves in the lee of stratified flow
over a long ridge can be suppressed at sufficiently small Rossby numbers. The combination
of rotation and stratification on the flow past isolated topography thus tends to produce more
nearly two-dimensional horizontal motions than would be present should these factors be
considered separately. : :

In the non-rotating stratified flows, it was noted that the boundary layer above the belt grows
with time according to (v¢):. For the rotating experiments, these horizontal boundary layers
grow to steady-state Ekman layers of thickness 8 &~ (v/w)} (approximately 1-2 mm for the
rotation rates considered) in a time scale, 75 & w™?; ‘steady state’ is reached in the present
facility well before the obstacle traverses one-half of the channel (Boyer & Kmetz 1983). This
inherent difference in boundary layers must be considered when comparing rotating and
non-rotating flow patterns especially those near the end of the obstacle traverse in the
non-rotating case.

15-2
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4.2.1. Homogeneous rotating flows: conical obstacle

Previous experimental studies (Boyer 1968 ; Boyer & Davies 1982 ; Boyer ¢t al. 1984) of high
Reynolds number, homogeneous, rotating flows past isolated solid obstacles have been limited
to two-dimensional topographies (upright cylinders). In these cases, it has been shown that the
presence of rotation affects the transition from separation to vortex shedding in the wake flow
and, furthermore, that when'shedding occurs, the cores of the cyclonic eddies have larger
relative vorticities than their anticyclonic counterparts. '

Figure 12, plate 7, depicts (2) near-field and () far-field observations from an experiment
in which the dye tracer is introduced at about the mid-height of the cone. We note that the
flow upstream of the obstacle veers to the left, and that the streamline separating flow passing
to the left of the cone from that passing to the right has its upstream location to the right of
the centre line passing through the cone axis. This is reminiscent of observations of the
homogeneous rotating flow past shallow topographies, as discussed by Vaziri & Boyer (1971).
The separated flow in the near-field wake (figure 124) is quite irregular and does not show
the development of a well-defined vortex street. Further downstream, however, the flow does
begin to develop into a more organized pattern (i.e. a vortex street) as indicated in figure 125.
In this and other homogeneous experiments, there was no clear indication of the cyclone—
anticyclone asymmetry noted above for right-circular cylinders of uniform cross section.

4.2.2. Linearly stratified flows: conical obstacle |

Figure 13, plate 8, depicts a series of experiments for flow past a cone in which the observation
level is varied and the free stream speed, U = 0.5 cm s™}, rotation rate, w = 0.25 s, and
stratification, Ap/p, & 0.6%,, are fixed; the photographs are all taken when the obstacle has
completed approximately one-half of the traverse through the channel.

Conservation of potential-vorticity arguments suggest that fluid columns initially above the
cone before the impulsive start of the topography should experience cyclonic relative vorticity
as they are advected downstream. This effect can be noted in the two lowest observation levels
in figure 13. This observation is in qualitative agreement with numerical experiments on a
similar physical system discussed by Huppert & Bryan (1976). We note, however, that this
initially shed cyclone (indicated by arrows on figure 135, ¢) is relatively weak and that the first
strong shed eddy is an anticyclone. This initial downstream advection of a weak cyclonic
disturbance followed by a strong anticyclone was also observed for the rotating homogeneous
flow past a cone.

The experiments of figure 13a—c indicate the dramatic decrease in streakline deflection with
height, in the wake. For example, the deflections just above the top of the cone (i.e. at
z*[hy = 1.06 in figure 13a) are seen to be very weak whereas strong eddy shedding occurs at
lower levels (i.e. z*/h, = 0.46 and 0.76 in 135 and 13¢, respectively). An analysis of these and
other experiments shows that the shed eddies, especially in the lower layers slope downstream
and towards the streamwise plane of symmetry (y = 0) as shown schematically in figure 7.
Furthermore, as indicated in figure 7, the eddy axes become more vertically oriented far
downstream. There is no apparent difference in the core strengths of the cyclones and
anticyclones, in contrast with the study cited earlier for homogeneous rotating flow past circular
cylinders (Boyer et al. 1984).

Figures 14 and 15, plate 9, demonstrate effects of increased rotation upon flows with rclatively
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small flows with relatively small Ap/p, = 0.69,. In each figure, the flow velocity (and hence
the Reynolds number) remains fixed but Ro, Ek and S all decrease as w increases; U = 1.0 cm™
in figure 14, and U = 0.5 cm™! in figure 15. The most apparent manifestation of the increase
in @ in figure 14 is the increased lateral extent of the downstream streaklines at a given reference
level, in this case z*/h, = 0.76. In these experiments, although § ~ O(1), the background
rotation is able to exert a strong control over the large-scale structure of the flow by establishing
a weak Taylor column (Davies 1972) above the cone. The presence of such a feature, at
relatively high values of w, results in an increase in the effective obstacle diameter and hence
in the lateral extent of the vortex street.

For the lower Reynolds number experiments of figure 15 (observation level, z* /k, = 0.46),
rotation can decrease the ‘strength’ of the vortex street. For small Reynolds numbers and large
rotation rates (i.e. very small Ro) the Taylor column can become quite strong, and separation
is inhibited in much the same way as that observed for the circular cylinder experiments of
Boyer & Davies (1982). Merkine & Solan (1979) have predicted the tendency for separation
to be inhibited from circular cylinders at sufficiently small Rossby numbers.

For the conical obstacle, the consequences of increasing the dominance of stratification over
Coriolis, inertial and viscous forces (i.e. increasing § for constant Ro, Re and EF) take the form
of an increased tendency to flow in horizontal planes (as for the non-rotating cases described
previously). In the upper layers of the fluid near the peak of the obstacle, the stronger
stratification ensures that less fluid flows over the obstacle and, in consequence, the lateral extent
of the downstream disturbance is wider than for cases of weaker stratification.

The time dependence of the motions are best observed by using particle-streak techniques.
Figure 16, plate 10, and figure 17, plate 11, represent experiments conducted at fixed free
stream speeds, U = 0.5 cm s~1, and stratification levels, Ap/p, = 0.8 9,. The observation level
in figure 16 is deep in the fluid (i.e. z*/k, = 0.15) whereas that in figure 17 is at approximately
mid-height of the cone (i.e. z*¥/k, = 0.51). The rotation rates, w, in (a), (¢) and (¢) of each
figure are 0.0, 0.25 and 0.50 s, respectively. Thus the Rossby, Ekman and Burger numbers
decrease, as indicated. The dimensionless observation time 7 = Ut/D for each photograph is
given in the figures. ,

Note first that the starting-eddy retention time, 7., is significantly shortened when the fluid
is rotating; this can be seen by comparing the initial photographs in each experimental run.
In the non-rotating cases (figures 164 and 174), the initial eddies are shed somewhere between
the first two photographs; the retention time, 7, & 10D /U, as stated earlier. In the rotating
cases, the initial eddy has been shed before the first photograph. From experiments with
photographs taken at earlier stages in the obstacle’s motion, it may be concluded that the
retention time scale for the rapidly rotating cases considered is given by the background rotation
period; i.e. 7, & 2n/w. The data indicate a constant of proportionality of about unity.

We also note that for the w = 0.25 s™! experiments (figures 164 and 175), a well-defined
vortex street is developed for this set of parameters (Ro = 0.13, Ek = 3.6 X 1074, 3.0 x 1074,
S§=5.2, 3.6). At the larger rotation rate of w = 0.50 rad s~ (figures 16¢ and 17¢, with
Ro = 0.07, Ek = 1.5 x 1074, § = 1.1) the increased effect of rotation has suppressed the vortex
shedding and the flow is effectively attached to the obstacle. These observations are similar
to the effects of increased rotation for right circular cylinders as found by Boyer (1968) and
Boyer & Davies (1982). ‘

The Strouhal number, St = nD/U, for eddy shedding from the cone, was measured by using
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dye-streak and particle-track data; here, n is the shedding frequency from one side of the cone.
The procedure adopted was to examine a sequence of photographs for which the time interval
[(1);— (7);-,] between successive (j— 1 and j) frames was known, and to calculate the distance,
l, a given vortex moved in the streamwise direction during this interval. The mean separation
distance, X, between successive vortices on the same side of the street was measured and the
frequency, n, could then be obtained from

n=1/[(1);= (1)) X. (4.1)

For each sequence of photographs, a mean value of St was obtained by using the data from
all shed eddies of the experiment.

Figure 18 is a plot of the Strouhal number as a function of the Burger number for the cone
for all values of Ro, Ek and Re investigated; in the figure, note that the different symbol shapes
depict different Rossby numbers, the symbol shading delineates the Reynolds number, and the
presence or absence of a tilde denotes the Ekman number. Whereas St may be a mildly
decreasing function of §, it appears to be essentially independent of Ro, Ek and Re.
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Ficure 18. Plot of Strouhal number against Burger number for cone and for various Ro, Ek and Re.
Geometrical parameters as in the legend of figure 4.

It is of interest to note that the Strouhal numbers obtained above are consistently less than
those obtained by Brighton (1978) for his non-rotating studies with conical obstacles. In the
Brighton investigation, values of §¢ ranging from 0.35 to 0.47 were measured for the ‘symmetric
instability’ and vortex-shedding régimes respectively, over a range of Fr and Re comparable
with the present study. '

4.2.3. Linearly stratified flows: cosine-squared obstacle

The initial objective in this series of experiments was to examine the vertical attenuation of
the steering effect with height for fixed geometry and Ro, Ef and S. Davies (1972), by using
spherical obstacles, has shown that such flows are attenuated with height, z* /A,, until a cut-off
value is reached above which incident horizontal streaklines are essentially unaffected by the
bottom topography.

The experiments depicted in figure 19, plate 12, are for a fixed free stream speed
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U = 1.0 cms™}, and for a relatively small proportional density stratification, Ap/p, = 0.6 %,.
The observation levels z* /A, are (2.43, 1.46, 1.00 and 0.49) for figures 19a—d, respectively. At
the lowest level (figure 194d), the incident flow is forced around the obstacle with a pattern
similar to that found by Vaziri & Boyer (1971) for homogeneous flow past shallow topography.
Above the topography, the flow is seen to be deflected at all levels by the Coriolis forces
associated with the background rotation, in the same general manner as for the conical obstacle
in figure 13. The deflections of such slow, steady flows at low Rossby numbers are well predicted
by quasigeostrophic theory, as will be shown in §5.

The effect of varying free stream speed (0.5 and 1.0 cm s™1) for fixed rotation, @ = 0.25 s71
and proportional stratification, Ap/p, & 0.5%,, is demonstrated in figure 20, plate 13. Here
the observation level is z* /k, = 1.46, and greater deflections for the lower Rossby number case
are noted.

It is of interest to investigate the characteristic motion changes for fixed rotation and free
stream speed and varying stratification. Figure 21, plate 13, depicts two experiments for
U=1.0cms™, v =0.50rad s7! and Ap/p, = 0.79, (figure 21a) and 5.09, (figure 215),
respectively; the observation level is at about half the mountain height, z* /k, = 0.49. Note that
for the relatively weak stratification case, § = 0.54 (figure 214) the flow goes ‘over and around’
the body with the general anticyclonic curvature above the obstacle characteristic of rotating
flows. With the high stratification flow, § = 3.8, however, the obstacle blocks the flow to a much
greater degree, forces more of the fluid around the topography and hence effectively presents
a much larger obstruction to the free stream motion than in the lower stratification case. At
a fixed free stream speed then, the wake pattern develops a strong vortex street in the lower
levels as Ap/p, is increased.

Similar effects can be noted for cases in which the stratification and free stream speed are
fixed and the rotation is increased. Figure 22, plate 14, depicts a series of experiments in which
again the observation level is z*/h, = 0.49, U = 1.0 cm s™! and Ap/p, = 5.09%,. The rotation
rate, w, has the values of (0.0, 0.25, 0.50 s™1) in figure 22a—c, respectively. As the rotation is
increased, other factors being fixed, the Taylor-Proudman column effect becomes increasingly
important and the obstacle presents a successively larger obstruction to the free stream flow.
The flow thus goes from one in which much of the fluid goes over the feature (figure 224) to
one in which most goes around (figure 22¢). With more flow going around, the effective
Reynolds number again is larger and a vortex streak is seen to develop.

The experiments described in §4.1.2 indicate that the presence of an isolated cosine-squared
topography in a stratified flow caused three-dimensional lee waves to be generated in the fluid.
Such lee waves also appear when the stratified fluid is rotating. The spatial characteristics,
however, are modified considerably by the rotational constraint. Figure 23, plate 15, represents
a series of experiments in which a vertically oriented sheet of light is used to indicate the lee-wave
structure along various planes perpendicular to the y-axis. Dye tracers are introduced at the
vertical locations z* /k, = (1.46, 2.43, 3.40). The positions of the dye-tracer sources are at the
far left of each photograph; these locations are clearly seen (the white dots) in the upper
photograph, for example. The dark areas along some of the streaklines are due to horizontal
excursions of the dye tracer away from the light sheet. The principal effect of rotation is to
develop an asymmetry in the lee-wave amplitude across the wake. In particular, the largest
amplitudes are observed on the right side of the obstacle looking downstream; compare, for
example, the photographsfory/(1D) = —0.4 and + 0.4. The asymmetric nature of the lee waves
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can be understood in terms of horizontal flow patterns such as shown in figure 20. Rotation
tends to deflect the incident flow to the right when crossing over the topography. Because the
value of Fr = 0.92 in figure 23 is significantly higher than the critical’ value of Fr = 0.4 for
the non-rotating case, the incident flow is not only deflected rightwards because of Coriolis force
effects, but is also diverted over, rather than around, the obstacle. Strong lee waves are thereby
generated in the downstream region on the right into which most of the descending fluid has
been directed.

4.3. Flow-régime diagrams

The matter of developing flow-régime diagrams for the present physical system is complicated
by the large number of dimensionless parameters, and by the fact that the flows are highly
three-dimensional in nature. For both the conical and cosine-squared obstacles three charac-
teristic flow patterns are defined.

The first is a flow in which the wake motion is steady and for which eddies will typically
be attached to the downstream portion of the obstacle. This régime is designated steady, and
is exemplified by figure 10 for the cosine-squared topography (for the range of parameters
investigated, no steady motions were observed for the cone). The second characteristic flow
is designated as varicose, above. In such a flow, the wake is unsteady but no vortex street within
one or two diameters downstream of the topography is in evidence. Examples of such flows
for the cone and cosine-squared topographies are given respectively in figures 5 and 9i. Flows
that are varicose near the topography but develop into vortex streets far downstream are
designated as varicose; see, for example, figure 9ii. Finally, flows for which vortices shed
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Ficure 24. Flow régime diagram of Fr~? against Refor conical obstacle for Ef values of (¢) 3.0 x 10~ and () 1.5 x 1074,
Symbols: @, varicose; and o, vortex street (see text). Geometrical parameters as in the legend for figure 4.
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Ficure 25. Flow régime diagram of Fr™! against Re for cosine-squared topography for E% values of () 3.0 x 10™*
and (b) 1.5x 1074, Symbols: e, steady; ©, varicose; and O, vortex street (see text). Geometrical parameters
as in the legend for figure 8. ; :

alternately immediately downstream of the obstacle are termed as a vortex-street régime.
Figures 13 and 21 are examples for the cone and cosine-squared topographies, respectively.

In determining the flow régimes for the cone, photographs at a fixed observation level
z*/h, = 0.46 (at about mid-height) were used. Figure 244,b shows the Fr~! against Re
flow-régime diagrams so-obtained for Ek & 3.0 x 107! and Ek & 1.5 X 107%, respectively. As
one notes, all of the observations indicated are designated as either varicose or vortex street.
As discussed above, increased rotation (smaller Ef) at low Reynolds numbers (Re < 500) had
a tendency to stabilize the wake and shift the flow from vortex street to varicose.

The observations for obtaining the cosine-squared Fr~! against Re flow-régime diagrams were
made at z*/k, = 0.5, a level above the Ekman boundary layers. The resulting diagrams for
Ek ~ 3.0x10™* and Ek ~ 1.5 x 1074, respectively, are shown in figure 254,5. As should be
expected, for fixed Fr~! and Ek, increased Reynolds numbers result in moving from steady to
varicose to vortex shedding. Similarly, for fixed Re and Ek and increasing Fr~! (increased
stratification), the flow will tend to become more unstable; i.e. a varicose motion develops into
a vortex street at increased stratification levels, other parameters being fixed. The data on the
effect of rotation (variable Ek) at fixed Fr~! and Re are too limited to draw firm conclusions.

5. NUMERICAL MODELLING

Some aspects of stratified, rotating flow over topography can be modelled with quasigeo-
strophic (hereafter Qa) physics (Pedlosky 1979; Holland 19%8). In particular, for small Rossby
number and small amplitude topographic relief, the behaviour of the flow is governed by the
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QG potential vorticity equation. In this case, the local vorticity tendency is given by several
contributions: the advection of vorticity, vortex-tube stretching due to variable depth,
Ekman-layer pumping on the lower boundary (assume that the lower boundary is rigid and
that the upper boundary is free), and frictional decay. Boyer et al. (1984) used such a model
to examine rotating flow past discs and cylindrical depressions in a homogeneous fluid including
a B-effect simulated by a variable-depth cross section. They showed a close correspondence
between selected laboratory flows and numerical simulations, and used the numerical solutions
to delve into the dynamical balances.

5.1. The quasigeostrophic potential-vorticity equation with friction, stratification and topography

Consider a comparison between laboratory flows and numerical experiments over isolated
topography in a channel geometry for the stratified case without B (that is, on the f-plane).
The vorticity equation for stratified flow can be written as

Df _ ow 9

Dt~ 2waz+VV g, (5.1)
where § = V%, is the vorticity of the nondivergent geostrophic flow,  is the QG streamfunction
with horizontal velocity components ¥ = —y/dy, v = 0y /0x, and w is the upward vertical

velocity in the interior. As before, w is the rate of rotation and v is the viscosity. A coordinate
system has been chosen with x positive to the right in the channel (downstream), and y cross
channel. The vertical coordinate z goes from — Hg(x,y) at the bottom, to zero at the top of
the fluid. The vorticity equation is supplemented by a buoyancy tendency equation in the

interior of the fluid given by

D#/Dt = w, (5.2)
where # is the perturbation (upward) of constant density surfaces from their level, undisturbed
configuration. The equation set is closed by the thermal wind relation that relates lateral
gradients of the density perturbations to vertical shear of the horizontal velocity (derived from
geostrophic and hydrostatic relations); i.e.

o
V=gt

= ou iz (5.3)

Here g is gravity and dp/dz is the horizontally averaged mean static stability of the fluid.
The boundary conditions on w at the bottom introduce the effects due to bottom topography
and Ekman-layer pumping (Pedlosky 1979). At the bottom

wlry —Hg) =IO Hy) +3 (2] Vo (5.4)

At the free surface, w(x,y,0) = 0.

In addition to the top and bottom boundary conditions, there are inflow, outflow and
side-wall conditions on velocity and vorticity. At both the upstream and downstream ends, a
uniform flow (2 = U = constant) is specified. At the upstream end, the vorticity is set to zero,
whereas at the downstream end the gradient of potential vorticity (defined below) is set to zero.
This last condition is a simple extrapolation technique that allows transients generated at the
bump to advect out of the domain. Little reflection of energy back into the region of interest
is found, and this condition is judged to be sufficiently effective for the present problem in which
advection is the only process by which energy is carried from one part of the fluid to another.
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Equations (5.1)—(5.4), together with the boundary conditions, define an initial-value
problem that describes the flow over the obstacle in terms of evolving streamfunction and
vorticity fields.

5.2. Numerical techniques

The 9c numerical model formulation with' N arbitrary layers is a straightforward extension
of the two-layer case described by Holland (1978). Here the form of the equations in which
the vertical discretization has already been done are presented. The horizontal discretization
and the form of the finite difference equations will not be discussed (the interested reader is
referred to Chow & Holland (1986) who have recently described the physics and an efficient
numerical code for solving this time-dependent boundary-value problem). ‘

As discussed above, the governing equations are the vorticity and interface-height pertur-
bation equations, and the thermal-wind relation. In discrete form, these are

QV“% =J(V¥y, ¥i) 420 (Wpy—wey) +VVYy, k=110 N; (5.5)
o Yo T H, | |
0
‘ 2w
and hlc+£ = g;”% Wgn1—¥r)- ' (8.7)

Whole-number subscripts (k) denote the vertical layers (£ increasing downward) in which
the QG streamfunction is defined (nominally at the centre of each of the layers) whereas
fractional subscripts (k+1) denote the interfaces between layers where the vertical velocity and
the interface height perturbations are defined. The variables are the QG streamfunction, ¥,
the interface-height perturbation, k.4, and the mean layer thicknesses, H,. The basic
background vertical stratification is written in terms of the reduced gravity g’ = gApy..1/po,
where Ap,..1 is the (positive) density difference between layers £+1 and £.

Topographic and bottom friction effects are taken care of by the bottom-boundary condition
on w; i.e. wyyy=J(Yy, Hg)+ (g Hy/20) V¥ y, where Hg(x,y) is the variable bottom
topography (positive upward) and eg is (vo/H% )t At the surface of the fluid wy = 0. The
advective velocities at the interfaces, needed in (5.6), are calculated from a weighted average of
the velocities in the layers;i.e. Y14 = @43 Vs + (1 —api1) Y, where ay g = Hy/ (Hy+ Hy,y).

These equations can be written in potential vorticity form as

DQ, _ W | |
Dt —F;c! k—’l:Ns : : (58)
2w ’
where Qe = Vi + 37 (b —hey); , (5.9)
’ k
and F =Wy, for k=1,N—1;Fy =V, —eViyy. (5.10)

For consistency in relation (5.9), 4 = 0 and ky,3 = Hg. Potential vorticity is conserved
following fluid particles, except for frictional effects.

Note that the layer streamfunction field can be written in terms of vertical modes. In fact,
the numerical solutions are found by solving the equivalent modal equations (each mode is
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simply a two-dimensional field) as discussed by Holland (1978). For the present case of uniform

stratification and equal layer depths, the model shapes are simply related to the streamfunction
by

$pr =Y+ ¥+ ¥n),
1 = (Y1 —¥s)s

and P2 = G(Y1—2¢,+ ),

where g, = 0.4082 and g, = —0.2357. Here, ¢y is the barotropic mode, and ¢, and ¢y,
are the first and second baroclinic modes. These baroclinic modes have radii of deformation
(called Rd, and Rd,) determined by the system parameters as shown in table 1 and, as will
be demonstrated, play an important role in the flow response to the obstacle.

5.3. Numerical experiments

These equations are solved as an initial-value problem in which a uniformly stratified flow
enters a channel of width 31.2 cm, length 62.4 cm and depth 8.1 cm. In the diagrams shown,
the flow is from left to right past an isolated cosine-squared obstacle of height 2.06 cm
and diameter 10.06 cm situated near the upstream end of the channel. The viscosity is
0.0108 cm? s™1. At time ¢ = 0, the undisturbed flow (z = U = constant, v = 0) begins to feel
the influence of the obstacle, disturbances move downstream, and after several minutes the flow
comes to a steady state, at least for the experiments run here.

A three-layer model (H), = 2.7 cm, % = 1-3) with uniform vertical stratification is considered.
A horizontal grid size of 0.312 cm is used so that there are 100 grid points across and 200 points
along the channel. A time step of 0.2 s is found to be necessary so that a run of 6 min takes
1800 time steps. The boundary conditions are that ¥ = —0yr/0y is constant at both upstream
and downstream ends (¢ is a linear function of y), and that @ = 0 on the upstream (inflow)
boundary and @, = 0 on the downstream (outflow) boundary. As explained earlier, this latter
condition is a very simple extrapolation technique to let ‘Q-stuff’ be advected out of the region.

Figure 26 shows the spin-up phase (the first 2 min) in terms of the potential vorticity plume
generated at the obstacle, and figures 27-29 show several fields after a steady state is reached
(6 min); in these experiments the upstream flow speed U is 0.50 cm s™, the rotation rate @
is 0.5s71, and the proportional density stratification, Ap/p,, is 0.0032 (see table 1). This is
considered the ‘standard’ case and U, w and Ap/p, are varied to understand the dependence
of the vertical and horizontal disturbances upon the non-dimensional numbers governing
the flow. For this case, the Rossby number, Ro = U/20wD = 0.05; the Ekman number,
Ek = v/20H? = 1.65 x 107%;and the Froude number Fr = U/h(gAp/Hp,)* = 0.048 (seetable1).
Finally, figure 304, plate 16, shows the streaklines measured in the laboratory for experiment 1
(table 1) at a depth z* of 3 cm above the bottom; figure 305, plate 16, shows the numerical
model streamlines at this level (interpolated linearly from levels 2 and 3 in the model results).

Figure 27 shows, at three levels, the streamlines of the steady flow (left panels), the
disturbance streamfunction obtained by subtracting the linear streamfunction representing the
uniform upstream flow (middle panels) and the barotropic and two baroclinic modes that can
be defined as a linear combination of the streamfunctions (right panels). Here the barotropic
mode shows the disturbance only; the inflow has been subtracted. The modes are especially
useful because the inflow is uniform in the vertical; i.e. it is barotropic, and the three modes
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layer 1

Ficure 26. The potential vorticity fields, @, at three levels (top to bottom) and at time intervals of 48, 72, 96 and
120 s, showing the spin-up phase of numerical experiment 1 (see table 1). After 2 min, the flow is near to steady
state. The contour intervals vary from level to level and time to time.

(a) (%)
layer 1 layer 1

Ficure 27. The steady-state fields (at ¢ = 360 s) of (a) the streamfunction ¥, (b) the perturbation streamfunction,
and {c) the perturbation vertical modes for numerical experiment 1 (see table 1). The top panel of the modes
shows the barotropic disturbance and the middle and lower panels show the first and second baroclinic modes,
respectively. The contour intervals from top to bottom are: left, 1.0, 1.0, 1.0 cm?s™!; middle, 0.1, 0.1,
0.1 cm?s™1; right, 0.1, 0.03, 0.008 cm? s™2.

represent the disturbance caused by the obstacle. Note that the leftward disturbance in the
streamlines, largest in the lowest layer and decreasing upward, is caused by a slightly
asymmetrical disturbance centred over the obstacle (shown by both the ¥ disturbance and
modal disturbance fields). Downstream, the streamlines tend to return to their original location
in the channel but they overshoot somewhat to give rise to a disturbance that reaches far
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layer 1

layer 2

layer 3

Frcure 28. The steady state fields (at ¢ = 360 s) of potentlal vorticity  for numerical experiment 1 (see table 1).
Note the plume-like nature of the spread of @ from its source over the obstacle. The contour intervals (top
to bottom) are 0.001, 0.002 and 0.04 s, respectlve]y

downstream. As will be shown later, the asymmetry and distant downstream influence are
caused by frictional effects.

Figure 28 shows plots of potential vorticity, @, in the three layers. Potential vorticity tends
to be conserved following streamlines (5.8) but is generated in the vicinity of the obstacle by
friction and carried downstream. @, is quite small, being the small difference between the
relative vorticity V2, and the stretching term 2w(ky,3—hy_y)/H,; see (5.9). Note that the
advection speed in this experiment dictates that the flow reaches a near steady state in only
2 min (figure 26) and is quite steady after 6 min.

Finally, the vertical velocities, w1, and height perturbatlons A3, at the 1ntcrfaces between
the layers are shown in figure 29. Taking account of the contour intervals (see figure legends),
the disturbance in w at the lower interface, 2.74 cm above the bottom, is about 359, of the
bottom induced vertical velocity, whereas w at the upper interface (5.4 cm above the bottom)
is only 109%,. The disturbance 4 shows a similar confinement of the disturbance by the
stratification to near the bottom. The first interface above the bottom is uplifted 0.85 cm and
the second interface 0.37 cm over an obstacle 2.06 cm high. These results will be quantified,
as a function of nondimensional numbers, below. The results are summarized in table 1.

These figures give a complete picture of the steady-state flow found with this choice of
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interface 1

interface 2

Ficure 29. The steady-state fields (at ¢ = 360 s) of vertical velocity (left) and height perturbation (right) at the
two interfaces separating fluid layers for numerical experiment 1 (see table 1). The contour intervals are
0.003 cm s~ (upper interface) and 0.01 cm s™* (lower interface) for w, and 0.01 cm (upper interface) and
0.05 cm (lower interface) for 4.

parameters U, Ap/p, and w. We can compare these results with other numerical experiments
that systematically vary these parameters. Table 1 gives quantitative results for seven distinct
experiments. Experiments 2 and 3 change the stratification, experiments 4 and 5 vary the
- amplitude of the inflow velocity, and experiments 6 and 7 vary the rotation rate. These changes
lead to the non-dimensional numbers and results shown in table 1 and in figures 31 and 32.
Because a complete set of pictures of the flows is too large to show, table 1 summarizes the results
in terms of how large the topographically induced disturbance is, as a function of depth, for
different fields, and figures 31 and 32 show the four disturbance fields and height-perturbation
fields, respectively, for experiments 2—7. These can be compared with the appropriate figures
showing results for experiment 1.

Note that the contour intervals for a given field at a given level are the same in all experiments
so they can be directly compared. In addition, as a measure of how large the disturbance is
in these seven experiments, the maximum disturbances in ¥, @, f;41 and w4, as measured
by the difference between the maximum and minimum values found in these fields, are shown
in table 1.

Figure 31 shows the streamfunction deviation fields for the six auxiliary experiments. Note
that experiments 2 and 7 show an especially strong asymmetry associated with the flow veering
far to the right (looking downstream) after passing the obstacle. In the lowest layer, the negative
disturbance, as shown by the number of contour lines, is greater in these cases than in
experiment 1. Experiment 5 has about the same disturbance amplitude whereas 3, 4 and 6
all have less deviation of the downstream flow. At the uppermost level (layer 1), however, only
experiment 7 is stronger than experiment 1. The strong response just above the obstacle in
experiment 2 is damped rapidly with height by the stronger stratification.

The interface-height perturbation fields are shown in figure 32. Note the large amplitude of
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Fiure 31. The streamfunction perturbation fields for numerical experiments 2-7. Experiments 2—4 are shown (left
to right) in (a); experiments 57 are shown (left to right) in (b). The contour interval (the same for all
experiments) is 0.1 cm? s™! in all diagrams.

response in experiments 3 and 7 and the broad region of uplift in experiments 2 and 6. This
baroclinic response is related to the respective baroclinic radii of deformation governing the
flow in the several experiments (table 1). Large deformation radii lead to a broad but weak
response whereas small Rd values lead to a local intense response.

Careful perusal of these results shows very briefly something of the nature of the QG stratified
topographic response in these experiments. In fact, the numerical model can be quite useful

17 Vol. 322. A
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interface 1

a

nterface 2

interface 1

nterface 2

Ficure 32. The height perturbation fields for numerical experiments 2-7 (left to right, top to bottom). The
contour intervals (the same in all experiments) are 0.01 cm (upper interface) and 0.05 cm (lower interface).

in understanding the detailed nature of the dynamics governing stratified rotating laboratory
flows. For example, it is easy to show that an important part (but not all) of the response
characteristics indicated here for the various experiments is dictated by the respective solutions
for a simplified, frictionless, steady flow in which @ is exactly conserved (and thus zero
everywhere). This is shown by examining @ = 0 solutions; figure 33 shows the fields for one
such case with experiment 1 parameters, to be compared with the full frictional solution in figure
27. The disturbance is symmetrical but the amplitude and horizontal-vertical structure is
similar to the actual experiment 1 results (see also table 1, where the streamfunction and modal
deviation amplitudes for both the basic experiments and for the analogous @ = 0 solutions are
given). The biggest differences between frictional and potential vorticity conserving flows is
found in experiment 5 where the slow basic flow allows time for friction to act, thus reducing
the deviation amplitudes. In this case, the disturbance amplitudes are only about 609, of the
frictionless ones, whereas all the other cases are greater than 85 9, of their respective frictionless
amplitudes. ' '

We shall not delve deeper into the physics of these flows here. It is clear that at least part
of the behaviour observed in the laboratory, the large-scale steering of the flow by an obstacle,
is captured and rendered understandable by these numerical exercises. It is also clear that
another part of the flow behaviour, the eddy-shedding aspect, is not found in these QG numerical
simulations. It is our speculation that this eddying behaviour, found to occur for the most part
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(a) ®) (0
layer 1 layer 1 mode 1

mode 3

Ficure 33. The fields of (a) the streamfunction ¥, (5) the perturbation streamfunction, and (¢) the perturbation
vertical modes for the frictionless case in which @ =0 everywhere in the flow; numerical experiment 1
parameters are used (see table. 1). Compare with figure 27 and see table 1 for amplitudes. The contour intervals
are the same as in figure 27.

at levels in the fluid below the top of the obstacle, is a vortex-shedding phenomenon associated
with frictional boundary layers on the sides of the obstacle, a phenomenon not included in the
QG physics. A full, primitive-equation numerical model would be needed to explore this
problem. ‘

6. CONCLUDING REMARKS

The present experiments have described both the transient development and steady-state
nature of the velocity fields resulting from the slow steady motion of tall, conical and smooth
shallow cosine-squared solid obstacles respectively through rotating stratified fluids. For
rotating and stratified fluids the motion above the level of the shallow cosine squared
topography is characterized by (i) horizontal deflections of incident streamlines and (ii)
lee-wave generation downstream. For a given obstacle and fluid geometry, the vertical distance
over which the obstacle exerts a steering effect upon the flow depends upon the values of Ro,
Ek and §. The degree of streamline distortion (steering) decreases with increasing z* /k, and

(i) reduces with increasing Ro for constant S, Ek;

(ii) reduces with increasing S for constant Ro, Ek.

The principal distinguishing feature of the lee-wave character is the cross-channel asymmetry,
with the largest amplitude waves being produced at the right side of the obstacle. The left-right
asymmetry in wave amplitude increases with decreasing § and Ro as more fluid is deflected
above the obstacle by the strong Coriolis force. As § increases, for constant Ro and Ek, more
fluid flows around rather than over the obstacle, and lee waves cease to be generated. The

T o17-2
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downstream flow at levels below the top of the obstacle then takes the form of a Karman vortex
street, with an increased tendency for vortices to be shed from the obstacle as § increases.

When eddies are shed downstream, for both the cosine-squared and conical obstacles the
lateral extent of the vortex-street wake

(i) increases with increasing Ap/p, for constant U, for non-rotating and rotating cases, and

(ii) increases with increasing w for constant U, for weak and strong Ap/p, provided that the
value of Fr is less than about 0.4.

The structure of the eddy field in the wake of the obstacle is determined essentially by the
presence or absence of either or both of the two agencies (rotation and stratification) capable
of inhibiting vertical motion. The results show that the field is established in three distinct
phases. Following the impulsive start of the obstacle’s motion from rest, the initial phase of flow
development consists of the rapid generation of a symmetrical starting eddy pair in the lee of
the obstacle. The eddy pair remains attached to the obstacle and moves with it. As time
proceeds, the pair elongates longitudinally until shedding occurs at the rear of the obstacle.
The dimensional retention time, 7,, of the eddy pair by the obstacle is significantly shorter for
rotating cases and appears to scale with the rotation period of the system (i.e. 7, w/21 ~ 1.
When the fluid is not rotating, the retention time is much longer and seems to scale with the
advective time; i.e. 7 = Ut/D =~ 10.

In the second phase of development (the shedding phase), the mode of shedding depends
critically upon whether either rotation and/or density stratification are present. In the absence
of both agencies, the eddies are shed in phase with each other from the right and left rear of
the obstacle respectively. However, if either w or Ap/p, are non-zero, eddies of opposite
circulation are shed alternately from the obstacle. Because of potential-vorticity conservation,
the initial downstream disturbance is cyclonic followed by the shedding of an anticyclonic
vortex and then alternate shedding. For the experiments conducted, there is no evidence of
the subsequent dominance of either cyclonic or anticyclonic vortices in the downstream wake.

The final stage of development consists of spindown of the individual eddies that have been
shed by the obstacle. The spindown process is most effectively accomplished when the system
is rotating, and for low § and shallow smooth topography, some of the eddies are spun down
rapidly to leave only a sinuous tail disturbance downstream.

Quasigeostrophic-model results explain some of this behaviour but not all. The roles of
stratification and friction in modifying the steady disturbance fields are examined briefly in
a narrow range of parameter space. It is clear that more complete physics than gc will be
necessary to examine the eddy-shedding process in detail.
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Ficure 4. (i) Near-field and (i1) far-field streakline patterns for non-rotating flow past conical obstacles with Re = 720 and Fr values
of (a) oo, (b) 0.17 and (¢) 0.06; A,/H = 0.81, hy/D = 0.87, D/L = 0.24 and z*/h, = 0.76.
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FIGURE 5. (a), (b) Near-field and (¢) far-field streakline patterns for homogeneous non-rotating flow past conical obstacles with Re values of
(a) 740 and (b), (¢) 1110; geometrical parameters as in legend of figure 4 and z* /A, = 0.46. Note that (a¢) and (b) represent time

sequences.
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Ficure 6. Time sequences of particle-streak photographs for non-rotating flow past conical obstacle with Re = 390, Fr = 0.08 and z* /A, values
of (a) 0.88, () 0.46 and (¢) 0.15; geometrical parameters as in legend of figure 4. The dimensionless exposure time, 7, = (At)U/D is 0.99,
while the elapsed dimensionless time, 7 = tU/D, 1s noted on the figure (see text).




Ficure 8. Streakline photograph depicting the existence of lee waves for non-rotating flow past a cosine-squared
obstacle for Re = 1500, Fr = 0.69, h,/H = 0.25, h,/D = 0.20, D/L = 0.32 and z*/h, = 1.46. Note that the
white lines painted on the upstream portion of the obstacle are not streaklines.



Ficure 9. (1) Near-field and (i1) far-field streakline patterns for non-rotating flow past cosine-squared obstacle with
z* [h, values of (a), (b) 0.97 and (¢), (d) 0.49, for Re, Fr values of (a) 1000, 0.19, (6) 1470, 0.29, (¢) 1000, 0.18
and (d) 1470, 0.27. Geometrical parameters as in the legend of figure 8.



F1iGUre 10. Legend as for figure 9 except for Re, Fr values of (a) 960, 0.55, (b) 1420, 0.75, (¢) 960, 0.55 and (d) 1440, 0.76.



FiGure 11. Some comparisons between streakline and particle streak photographs of non-rotating flow past
cosine-squared obstacle for Re, Fr values of (a) 520, 0.25, (b) 490, 0.31, (¢) 1030, 0.51 and (4) 1000, 0.59 and
for z*/h, = 1.46. Geometrical parameters as in the legend of figure 8.




FiGure 12. (a) Near-field and (b) far-field streakline patterns for rotating homogeneous flow past conical obstacle;
Ro = 0.20, Ek =1.6x 1074, Re = 1100, § = 0.0, Fr = o0 and z*/h, = 0.46. Geometrical parameters as in the
legend of hgure 4.
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Ficure 13. Streakline photographs for rotating, stratified flow past conical obstacle with Ro = 0.13, Ek = 3.1 x 107,
Re = 370, S = 3.1 and Fr = 0.09. Geometrical parameters as in the legend of figure 4. Arrows on (4) and (¢)
indicate initial cyclonic disturbance.
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FiGURE 14. Streakline photographs showing effects of increasing w-upon rotating, stratified flow past conical obstacles
for Re = 740, Fr = 0.17 and z* /h, = 0.76. Geometrical parameters as in the legend of hgure 4.
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Ficure 15. Streakline photographs showing effects of increasing w upon rotating stratified flow past conical obstacles
for Re = 360, Fr = 0.09 and z*/h, = 0.46. Geometrical parameters as in the legend of figure 4.
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Ficure 16. Time sequences of particle streak photographs for rotating stratified flow past conical obstacle for Re
Fr=0.08 and z*/h, = 0.15. Geometrical parameters as in the legend of figure 4.
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igure 17. Time sequences of particle streak photographs for rotating stratified flow past conical obstacle for
Re = 390, Fr = 0.08 and z* /A, = 0.51. Geometrical parameters as in the legend of figure 4.




Ficure 19. Streakline photographs for rotating stratified flow past cosine-squared topography with Ro = 0.10,
Ek=1.6x107% Re =950, § = 0.47 and Fr = 0.57. Geometrical parameters as in the legend for figure 8.
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Ficure 20. Streakline photographs showing effects of increasing U upon rotating stratified flow past cosine-squared
topography for £k = 1.7x 107, §=0.24 and z*/h, = 1.46. Geometrical parameters as in the legend for
figure 8.
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Ficure 21. Streakline photographs showing effects of increasing Ap/p, upon rotating stratified How past
cosine-squared topography for Ro = 0.10, £k = 1.6 x 107, Re = 950 and z* /h, = 0.49. Geometrical parameters
as 1n the legend for figure 8.
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Ficure 22. Streakline photographs showing effects of increasing @ upon rotating stratified flow past cosine-squared
topography for Re = 980, Fr = 0.20 and z*/k, = 0.49. Geometrical parameters as in the legend for figure 8.
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FiGUure 23. Side elevation photographs of lee waves generated by cosine-squared topography for Re = 0.30,
Ek =3.0x107% Re = 1510, 8 = 1.7, Fr = 0.92, z* /h, = 1.46, 2.43, 3.40 and for y/(1D) of (a) —0.8, (6) —0.4,
() 0.0, (d) 0.4 and (e) 0.8. Geometrical parameters as in the legend for figure 8.
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Ficure 30. A comparison of (@) laboratory and (4) numerical model streamlines at a height of 3 cm above the
bottom, for numerical experiment 1 parameters (see table 1).



